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Device Design and Efficiency subteam

Team priorities

Urgent Issues with highest priority 

• Fabricate and improve a-Si/a-SiGe/µc-Si triple cell

• Establish device physics related to µc-Si and thin film Si

• Study the dependence of µc-Si formation on different substrates

• Evaluate and improve the doped layer in multiple junction structure for µc-Si bottom cell i-layer

• Study and control the p-i and n-i interface layers for narrow bandgap cells

• Deposition of a-SiGe and µc-Si material at high deposition rate

• Optical designs for light enhancement

• Identify and develop consensus on approaches that have the highest possibility to lead to 15% 
stable solar cells. 

Important Issues:

• Characterization techniques for µc-Si and correlation of these measurements with device 
performance

• Post-deposition treatment for µc-Si solar cells

• Understanding and improving Voc

• Deposition of µc-Si in large area. 



Large-area deposition using the 30 MW/year 
production constrains

UNITED SOLAR SYSTEMS CORP.

1. Modified the large-area deposition machine with new cathode design to 
simulate 30 MW/year production machine

2. Improved the uniformity over a larger area deposition (see the table below)

3. Started optimization of component and triple-junction cells using SiH4
instead of Si2H6

4. Achieved an initial total-area efficiency of 10% with a-Si:H/a-SiGe:H/a-
SiGe:H triple-junction structure



UNITED SOLAR SYSTEMS CORP.

 

Average thickness uniformity data of individual layers for old and new 
cathodes, where Hi-Lo (%) = (maximum thickness – minimum thickness) / 
maximum thickness and CV (%) = standard deviation/average. 
 

Layer Cathode Hi - Lo (11 x 11") CV (11 x 11") 
Old 54% 22.5% I1 

 New 24% 10% 
Old 46% 17.9% I2 
New 23% 8% 
Old 55% 21.3% I3 

 New 23% 8.5% 
 



UNITED SOLAR SYSTEMS CORP.

Initial total-area (0.268 cm2) performance of component and triple-junction cells 
made using large-area machine after installation of new cathode.  The cells were 
deposited with SiH4 over 11" × 11" deposition area. 
 

Sample 
 

Structure Substrate Light  Pmax  
(mW/cm2) 

Jsc  
(mA/cm2) 

Voc  
(V) 

FF 
  

9117 top SS     AM1.5 6.36 8.55 1.004 0.741 
9179 middle SS >530 nm 3.45 7.42 0.678 0.687 
9170 bottom Al/ZnO >630nm 3.08 8.14 0.595 0.635 
9381 triple Al/ZnO AM1.5 10.0 6.40 2.242 0.704 

 
Goal: Efficiency > 9.0% encapsulated stable large-area cell with aperture-area of 460 cm2. 
Required cell efficiency: In order to achieve this goal, we need an initial total-area (0.268 
cm2) cell efficiency > 11.2%  
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a-Si & µc-Si Device Physics Projects:
Recent Progress

n Band & bandtail parameters for a-Si solar cell models
– Low mobility of holes is probably a significant limitation (yesterday)
– Measurements of Voc vs. T, light-soaking

(to complete parameter set)
– Measurements of hole drift mobility (time-of-flight)

» What affects the hole mobility? We don’t know.
» Fun with BP, PSU, USSC!

n Hole mobility estimates for µc-Si
– Succeeding (collaboration w. Juelich)
– Hole drift mobility around 1 cm2/Vs at 300 K. Physics a puzzle.

n Infrared absorption spectroscopy of interfaces
– Interesting, complicated spectra.
– Not well explained by simple models for n/i and p/i interfaces. 

Looking at complexing & multi-phase models for doping.
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First Measurement: Infrared Absorption 
Spectrum of p/i Interface in a-Si pin Solar Cells

n Varying a-SiC:B
p-layer sample series from 
BP Solar (thanks!)

n Charge modulation spectra 
show effect of varying B in 
p-layer.

– Our grail!

n EF shift is a partial 
explanation, but more 
structure than expected.

– n-layers also full of 
surprises – which were  
likely evidence for 
complexing.
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A VOC & Metastability Oddity

n Goal of experiment 
was to determine VOC
when ND = 0 (by 
extrapolation).

n USSC solar cell 
(thanks)

n Used 1 s illumination 
“pulses” up to 100 s. 
Longer times, higher 
duty cycle after.

n Unexplained “kink” 
when duty-cycle 
changed. Seen twice.
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1 Sun VOC Limited by Bulk Recombination

• Voltage regime over which bulk 
recombination dominates – limited by 
interface recombination.

• With optimized p/i, n/i interfaces – such 
transport can extend to 1 sun VOC.

• On cells with i-layers having mobility gaps of 
1.86 eV 1 sun VOC values limited by bulk 
recombination have been identified.

• Systematic increases in bulk recombination in 
JD-V characteristics with i-layer thickness 
directly related to VOC for JSC of 7.5 mA/cm2 

with red light illumination.

Light induced changes in VOC due to 
SWE in bulk:
— Confirm limitations imposed by 

recombination in the i-layers.
— Indicate absence of limitation due to 

recombination through tail states – whose 
densities are not affected by SWE.
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Importance of Vn in Determining Cell Characteristics

• Vn: potential barrier in i-layer at n contact
• Vn determined by space charge of electron 

filled gap states due to large n0 – not large 
densities of states. 

• n0 depends on alignment of EF in n layer 
with Ec in i-layer.

• Alignment different for p-i-n cells with a-
Si:H and µc-Si:H n contacts .

• Bulk recombination same.
• Carrier injection clearly lower for n-a-Si:H 

– higher Vn.

• Consistent with: close alignments of Ec, between i and n a-Si:H (EA ~ 0.26eV); 
1.1eV bandgap of µc-Si:H, ~ equal discontinuities in Ec and Ev with i a-Si:H (EA
~ 30meV). (Koval et al., J. Non. Cryst. Solids, 299-302, 1136, 2002)

• Opposite conclusion by Poissant et al. (J. Appl. Phys. 93, 170, 2003) based 
purely on VOC and modeling results.

• No effect on VOC – zero current flow.
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Device Design and Efficiency Research

• To study the effect of interface layers at ITO-p and 
n-ZnO. Need to deposit 12 layers of triple cell 
without vacuum break

• A new self-designed 5-chamber system (four 
sputter + one loading) to allow uniform deposition 
of 4”x4” films (Ag, Al, ZnO, ITO) is being 
integrated into UT’s existing 4-chamber 
PECVD/HWCVD system. Project 70% completed. 

• One sputter chamber is completed. Uniform 
deposition achieved using a rotating substrate 
holder over a 3” sputter target. ITO film is being 
optimized in this chamber. 

University of Toledo



Improved back reflectors using multi-layer approach 
Energy Conversion Devices, Inc. 

Greg Demaggio, Scott J. Jones (P.I.) Tongyu Liu, Jeff Steel and 
David Tsu 

 
Goal:  Devise new multi-layered back reflector that will lead to 
enhanced cell currents and improved efficiencies.   
 
First Approach: Take present Al/ZnO back reflector used in 
production and add optical stack of materials with different indices 
for refraction.  In particular, add layers with high n to enhance 
reflection in the >600nm region. 
 
 
 
 
 
 
Activities: 
Focusing on multi-layer structure of (low n)/(high n)/(low n) 
materials 
With high n material being Si and low n material being ZnO 
alloyed with elements identified as X and Y 
 
 
 Using dc sputtering to fabricate layers  
 
 
 
 
Most of our work has been on producing the ZnO alloys to prepare 
materials with: 

1) High transparency 
2) High conductivity  
3) Low n (below 1.7) 

           ZnO 

            Al 

           ZnO 

            Al 

Multi- layer stack 

ZnOX 

ZnOX 

Doped Si 



Through alloying with X and Y, have been able to prepare 
materials with high conductivity (ρo<10-3 Ωcm), high transparency 
(96-97%) and n between 1.6 and 1.7. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Initial Cell Performance without optimization of layer 
thicknesses demonstrates similar Voc, FF and Rs for cells with 
Ag/ZnO and new back reflector materials – Currents need to be 
improved with proper optimization of back reflector film 
thicknesses. 
 

Back 
reflector 

Voc 
(V) 

Jsc 
(mA/cm2) 

FF Rs 
(Ω cm) 

Pmax 
(mW/cm2) 

Ag/ZnO 0.641 22.68 0.497 
 

8.7 7.23 

Al with 
ZnOX 

0.638 19.18 0.496 9.9 6.06 

Al with 
ZnOY 

0.639 20.60 0.494 9.6 6.50 
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DEVICE DESIGN AND EFFICIENCY
OPTICALLY-BASED LIMITATIONS TO EFFICIENCY 

Goal: A basic understanding of the optical physics of solar cells, 
verified through experimentation, that allows separation, 
quantification, and ultimately -- though simulation -- prediction 
of the optically-based limitations to solar cell efficiency

New results: Advanced TCO measurement capabilities.

Determination of optical properties and 
structure of materials in the textured state 
through*:
(i)   better suppression of scattering via    

two-layer sandwich contacted with
index-matching fluid

(ii)  improved separation of the 
absorption due to TCO and glass

(iii) more advanced optical modeling that 
combines SE on textured surface 
(for  n) and T on index-matched     
sandwich (for k)

*  G. M. Ferreira et al., MRS Proc. 
(2003,  in press)

Real time characterization of optical 
properties and structural evolution by 
"Mueller matrix ellipsometry"*:
(i)  "microscopic scale" roughness from 

polarization change upon reflection  
(ii)  "macroscopic scale" roughness from  

reflectance deficit
(iii) "geometric scale" roughness from the    

degree of polarization
*  C. Chen, et al., Phys. Rev. Lett. 90,   

217402 (2003). 

ZnO etching
in HCl/H2O



DEVICE DESIGN AND EFFICIENCY
OPTICALLY-BASED LIMITATIONS TO EFFICIENCY

Goal: Multilayer transparent conductors to minimize high energy   
reflection and parasitic absorption losses 

Approach: Need a multilayer broad-band anti-reflector (400 - 800 nm) 
as a top contact;  also need a multilayer broad band "perfect“
reflector (800 - 1000 nm) as dielectric spacer in retroreflector

Example of losses that must be overcome with this approach; ∆Jsc
obtained by integrating the absorption loss over the range from 
λmin= 800 nm to λmax= 1024 nm
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Device Design and Efficiency subteam Team priorities

Urgent Issues with highest priority 

• Fabricate and improve a-Si/a-SiGe/µc-Si triple cell (USSC, UT)

• Establish device physics related to µc-Si and thin film Si  (SU)

• Study the dependence of µc-Si formation on different substrates (UT)

• Evaluate and improve the doped layer in multiple junction structure for µc-Si bottom cell i-layer (USSC)

• Study and control the p-i and n-i interface layers for narrow bandgap cells (USSC, UT)

• Deposition of a-SiGe and µc-Si material at high deposition rate (USSC, ECD, UT, PSU)

• Optical designs for light enhancement (ECD, UT, PSU)

• Identify and develop consensus on approaches that have the highest possibility to lead to 15% stable 
solar cells. (USSC)

Important Issues:

• Characterization techniques for µc-Si and correlation of these measurements with device performance 
(SU, UT)

• Post-deposition treatment for µc-Si solar cells

• Understanding and improving Voc (USSC, SU)

• Deposition of µc-Si in large area. (USSC)



Future Plans

United Solar: 

• Continue to optimize µc-Si materials and cells to be 
integrated into a-Si/a-SiGe/µc-Si triple-junction 
structure. a-Si top and a-SiGe will also be optimized

• Continue to optimize large area a-Si/a-SiGe/a-SiGe 
structure using constraints imposed by production 
conditions. 

ECD:

• Develop optically enhanced back reflector

• Develop high rate µc-Si deposition process



Future Plans—Con’d

Syracuse: 

• Conduct hole mobility measurement for dilution series, dep-
rate series, CIS

• Polymer/Si heterojunctions

• IR spectroscopy (interfaces, µc-Si)

• Device physics and modeling à degraded state

PSU—Wronski: 

• Continue research in present areas. 



Future Plans—Con’d

Collins (PSU and UT):

• Optimization of optical collection—expt.

•Grading schemes in SiGe:H (UT)

•Texturing of back-reflector ZnO (PSU)

•Index variation in ITO and ZnO (UT)

•Improved ZnO/metal interfaces

• Optimization of Optical Collection—Theory

•Optical function of material components

•Properties of interfaces

•Micro/macro/geo roughness



Future Plans—Con’d

Collins (PSU and UT):

• Materials—Phase diagrams and protocrystalline SiGe:H

•RF and VHF PECVD with SiH4/GeH4 (PSU)

•RF and VHF PECVD with Si2H6/GeH4 (UT)

• Materials—Phase diagrams and optimization of uc-Si:H

•RF, VHF, HWCVD (UT)

Deng (UT)

• Deposit complete ITO/a-Si/a-SiGe/a-SiGe/Al/ZnO in an 
integrated system without vacuum break

• Deposit µc-Si solar cells using VHF PECVD and HWCVD
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